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Abstract

Traditional recommendation system focus more on the cor-
relations between users and items (user-item relationships),
while research on user-user relationships has received sig-
nificant attention these years, which is also known as so-
cial recommendation. Graph-based models have achieved a
great success in this task by utilizing the complex topologi-
cal information of the social networks. However, these mod-
els still face the insufficient expressive and overfitting prob-
lems. Counterfactual approaches are proven effective as in-
formation augmentation strategies towards above issues in
various scenarios, but not fully utilized in social recommen-
dations. To this end, we propose a novel social recommen-
dation method, termed SR-GCA, via a plug-and-play Graph-
Level Counterfactual Augmentation mechanism. Specifically,
we first generate counterfactual social and item links by con-
structing a counterfactual matrix for data aug- mentation.
Then, we employ a supervised learning strategy to refine
data both factual and counterfactual links. Thirdly, we en-
hance representations learning between users via an align-
ment and self-supervised optimization techniques. Extensive
experiments demonstrate the promising capacity of our model
from five aspects: superiority, effectiveness, transferability,
complexity, and robustness. In particular, the transferability
is well-proven by extending our GCA module to three typical
social recommendation models.

Introduction
Recommendation systems (RS) primarily emphasize the
correlations between users and items (user-item relation-
ships), achieving remarkable success on e-commerce plat-
forms like Amazon, Taobao, and others (Tu et al. 2021; Yu
et al. 2022). However, as the amount of available informa-
tion increases and more people prefer to make friends on-
line, the scope of recommendation scenarios has expanded
from user-item interactions to user-user interactions (Mei,
Huang, and Li 2021) (see Fig. 1). This shift has led to the
emergence of a new field known as social recommendation
(SR), which focuses on exploring the more complex rela-
tionships between users, in contrast to traditional RS tasks
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Figure 1: A comparison of user-user interaction graphs and
user-item bipartite graphs. Traditional RS tasks generally
focus on simpler user-item interactions within User-Item
graph, whereas SR delves into the more complex relation-
ships within User-User social Graphs.

that typically deal with simpler user-item interactions in bi-
partite graph structures. A multitude of SR methods have
been proposed, such as SocialMF (Qian 2015) and SoRec
(Ma et al. 2008a; Liang et al. 2024a), which extract fea-
tures by decomposing rating and social matrices or apply-
ing social regularization. Recently, the rapid evolution of
graph neural networks (GNNs) has prompted exploration
of their application within the SR domain (Qin et al. 2020;
Liang et al. 2024b). This interest stems from GNNs’ capa-
bility to synthesize node-specific information and the under-
lying topological structures (Sun et al. 2024a; Liang et al.
2024c). Their adeptness at managing the complexities em-
bedded in social relationship networks positions GNNs as an
ideal choice for modeling the non-Euclidean nature of social
dynamics and user interactions (Qin et al. 2021; Song et al.
2024; Luo et al. 2024a). They naturally represent user inter-
actions and user-item relationships as graph-structured data.
GNN-based SR methods typically follow two approaches:
either integrating user-item and user-user graphs into a sin-
gle heterogeneous graph for unified representation learning
or separately modeling these graphs and combining the re-
sulting vectors for a comprehensive user representation (Yu
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et al. 2022; Liu et al. 2023b; Sun et al. 2024b). However,
graph data sparsity remains a challenge, often leading to in-
sufficient expressiveness and overfitting(Cai et al. 2023; Ni
et al. 2024; Luo et al. 2023). To this end, graph data aug-
mentation, aiming to enrich the feature space and simulate
diverse social interactions, has become a focal point in the
realm of SR research (Xia et al. 2023; Zhang et al. 2024).

In recent years, the development of causal inference the-
ory has provided strong support for improving the per-
formance of recommendation systems, including debiasing
data, data augmentation, and model enhancement, as well as
how to achieve the interpretability, diversity, and fairness of
recommendation systems (Zhu, Ma, and Li 2023). Notably,
counterfactual inference lies at the core of causal inference,
and counterfactual data augmentation has demonstrated sig-
nificant advantages (Yu et al. 2024; Tu et al. 2024b,a), en-
abling the exploration of alternative scenarios and enhancing
models’ ability to discern causal effects, it enables the explo-
ration of alternative scenarios and strengthens the models’
ability to understand causality and make more informed rec-
ommendations. However, current counterfactual-enhanced
SR models primarily focus on user-item interactions through
negative sampling (Bayer, Kaufhold, and Reuter 2022; Ren
et al. 2024), neglecting richer user-user and item-item as-
sociations, and thus overlooking significant graph structural
information (Zhao et al. 2022; Liang et al. 2023). For ex-
ample, in Fig.1, Alice and Adam share common interests,
likely due to community ties. Similar interests can also be
found between individuals from different communities, like
Adam and John may share common interests, represented
by a potential link. Although these potential links may seem
intuitively reasonable and informative, they might not be
recorded for various reasons, such as privacy concerns or
limitations in time, resources, and budget. From the perspec-
tive of causal inference, these unrecorded potential links are
actually counterfactual links (Abrate and Bonchi 2021; Bajaj
et al. 2021; Tan et al. 2022). As an important supplementary
resource to observed graph, these counterfactual links can
be more comprehensively utilized at the graph level, thereby
helping to train SR models with better accuracy and gener-
alization capabilities. To our best knowledge, this research
direction has yet to be thoroughly explored.

To address this gap, we propose a novel method called
SR-GCA, which generates counterfactual graph-level links
to enhance SR. By posing counterfactual questions such
as ”Would Alice and Adam be socially connected without
their shared community?” in Fig. 1, we can understand the
underlying causality and fully capture the complex topol-
ogy of the graph. Therefore, we propose applying counter-
factual learning at the graph level in SR to fully leverage
the graph-level structural information. These counterfactual
links represent unobservable outcomes for a given pair of
nodes under hypothetical conditions. By creating counter-
factual links for all positive and negative training examples,
we effectively perform graph data augmentation, enriching
the training set. Specifically, we first generate counterfactual
graph-level links from the observable graph. Then, we train
a GNN-based link predictor to learn user representations that
predict both factual and counterfactual interactions, enabling

us to evaluate individual treatment effects. Ultimately, the
predictor aims to identify the key factors driving interactions
within the graph structure. Our contributions are as follows:
1. We provide a new perspective on the causal relationship

in graph-level structure by exploring counterfactual ques-
tions. SR-GCA facilitates counterfactual data augmen-
tation in SR, highlighting the advantages of graph-level
counterfactual augmentation over negative sampling.

2. We introduce SR-GCA, a novel module leverages the
causal relationship between social network structure and
social links to enhance SR. While item-item and user-
user graphs are complex and rich in information, the
user-item graph requires less detail at the graph level.

3. Extensive experiments highlight the strong capabilities
of our model across five key aspects: superiority, effec-
tiveness, transferability, complexity, and Robustness. No-
tably, the model’s transferability is demonstrated by inte-
grating GCA module into three different SR models.

Related Work
Social-Aware Recommendation
Numerous social recommendation methodologies (Huang
et al. 2019; Liu et al. 2023a) integrate online social rela-
tionships among users into the recommendation framework
as side information. Early methods (Ma et al. 2008b; Guo,
Zhang, and Yorke-Smith 2016) rely on matrix factorization
to project users into latent factors, based on the assumption
that users often share interests with their socially affiliated
counterparts. With the rise of deep learning, many recent
works (Shen et al. 2020; Luo et al. 2024b) have applied deep
learning techniques to social recommendation tasks, achiev-
ing promising results. More recently, studies (Wu et al.
2019; Huang et al. 2021) have explored the application of
GCNs to simultaneously model both user-user and user-item
relationships. Moreover, attention mechanisms have been in-
troduced to discern variations in user influence, thereby bet-
ter capturing their preferences (Fan et al. 2019). Addition-
ally, some methods (Long et al. 2021; Yu et al. 2021) incor-
porate graph augmentation into contemporary SR to further
enhance performance. However, previous approaches have
rarely fully exploited the rich information within the com-
plex topological structures of graphs structures.

Counterfactual Learning on Graphs
The counterfactual paradigm, central to causal inference,
estimates causal effects by exploring ”What if” scenarios.
Counterfactual learning has gained widespread adoption in
various machine learning fields recently, including computer
vision (Abbasnejad et al. 2020) and natural language pro-
cessing (Calderon et al. 2022). This approach helps reduce
overfitting, offering more robust and generalized models
(Kaddour et al. 2022). To avoid false explanations and iden-
tify key causal factors in predictions, researchers (Bajaj et al.
2021; Tan et al. 2022) have developed various models to ob-
tain counterfactual explanations on graphs. Counterfactual
link prediction is widely studied in the contexts of link pre-
diction tasks (Zhao et al. 2022), knowledge graph comple-
tion (Zhao et al. 2022), and RS (Mu et al. 2022; Song et al.
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Figure 2: An overview of SR-GCA. We input user-item
graph in Social Recommendatioin (SR) Backbone and User-
level graph into Graph-Level Counterfactual Augmentation
Module.

2023) to explore the root causes of link formation. How-
ever, few studies have explored counterfactual learning from
a graph-level perspective in SR.

Methodology
Preliminary
Given a user behavior dataset in a social recommendation
scenario, which includes interactions between N users U =
{u1, ..., uN} and M items V = {v1, ..., vM}, we repre-
sent the user-item interaction data using the collaborative
graph Gr = (U ,V, Er), where edges are formed when a
user ui interacts with an item vj . The user-item interac-
tion matrix Er = [xi,j ] ∈ RN×M is defined such that
xi,j ∈ {0, 1}, with xi,j = 1 if the interaction (ui, vj) is
observed and xi,j = 0 otherwise. To encode user-user social
relations, we define the user-user social graph Gs = (U , Es),
where U represents the set of users. The adjacency ma-
trix Es ∈ {0, 1}N×N indicates social connections between
users, with Es(i, j) = 1 denoting a connection between user
ui and user uj . Additionally, to represent potential counter-
factual links between items, we define the item-item inter-
action graph Gi = (V, Ei), where V = {v1, v2, . . . , vM}
is the set of items. The adjacency matrix Ei ∈ {0, 1}M×M

encodes these relationships, with Ei(i, j) = 1 indicating a
counterfactual connection between item vi and item vj .

Overview
The proposed method consists of two main components: the
SR Lightweight-GCN Backbone and the Graph-Level Coun-
terfactual Augmentation (SR-GCA). SR-GCA enhances RS
by generating counterfactual links to improve link pre-
diction. Specifically, it comprises two key modules: the
Counterfactual Links Constructor (GCA-CLC) and the
Counterfactual Links Learner (GCA-CLL). By employing
lightweight graph convolutional networks (GCNs) and a
simple MLP decoder, this method refines both factual and
counterfactual relationships, thereby enhancing expressive-
ness and reducing overfitting. We input a User-User graph to
obtain user predictions.

Notation Explanation

U = {u1, . . . , uN} Set of users

V = {v1, . . . , vM} Set of items

Gr = (U, V, Er) The user-item collaborative graph

Gs = (U, Es) The user-user social graph

Gi = (V, Ei) The item-item interaction graph

A Factual link matrix

ACF Counterfactual link matrix

T Factual treatment matrix

TCF Counterfactual treatment matrix

Ti,j Binary treatment entry for (ui, uj)

Table 1: Notation Summary

Social Recommendation (SR) Backbone
Inspired by the effectiveness of lightweight GCN-enhanced
collaborative filtering paradigms, we adopt it as our back-
bone model to configure the user-item interaction graphs:

E(l)
r = (Lr + I) · E(l−1)

r , (1)

where E(l)
r , E(l−1)

r ∈ R(I+J)×d are the embeddings of users
and items after l iterations of modeling. I ∈ R(I+J)×(I+J)

denotes the identity matrix to enable self-loops. The Lapla-
cian matrix Lr ∈ R(I+J)×(I+J) is defined as:

Lr = D
− 1

2
r ArD

− 1
2

r , Ar =

[
0 E
E⊤ 0

]
, (2)

here, E ∈ RI×J is the user-item interaction matrix, and 0
represents an all-zero matrix. The bidirectional adjacency
matrix Ar of the user-item interaction view is normalized by
multiplying it with the corresponding diagonal degree ma-
trix Dr. Additionally, to capture user-user social relations,
we apply a lightweight GCN to the user social graph Gs.
Each layer of this lightweight GCN is defined as follows:

E(l)
s = (Ls + I) · E(l−1)

s , (3)

Ls = D
− 1

2
s AsD

− 1
2

s , (4)

here, As ∈ RI×I encodes the social connections between
users, and Ds,Ls ∈ RI×I are the corresponding diagonal
degree matrix and the normalized Laplacian matrix, respec-
tively. The embeddings E(l)

s ,E(l−1)
s ∈ RI×d represent the

user embeddings at the l-th and (l−1)-th layers of the graph
neural network, respectively.

To aggregate the embeddings encoded from different or-
ders in Gr and Gs, our model adopts mean-pooling operators
for both the interaction and social views, L is the maximum
number of graph iterations.:

Ēr =
L∑

l=0

E(l)
r , Ēs =

L∑
l=0

E(l)
s . (5)
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For item-item links, we first construct an item-item graph
to capture the semantic similarities between items. The em-
bedding of item i is initialized from its representation in the
user-item collaboration graph, which is the embedding ob-
tained in the context of interactions between the item and
users. For clarity, we denote this initial embedding as ei0:

ei0 = eu0 ⊙ σ(eu0 ×W i + bi), (6)
where eu0 is obtained after the embedding propagation on the
social graph, W i and bi are learnable parameters represent-
ing the weight matrix and bias vector, respectively, σ is an
activation function (commonly the sigmoid function), and
⊙ denotes element-wise multiplication. We adopt the same
embedding propagation method as in the user-user graph,
using LightGCN for processing.

Graph-Level Counterfactual Augmentation (GCA)
The Graph-Level Counterfactual Augmentation comprises
two modules: GCA-CLC and GCA-CLL. The user-user
graph and item-item graph are constructed in the same man-
ner. In this context, we primarily use the user-user graph as
an example to demonstrate the process.

Counterfactual Links Constructor (GCA-CLC) We de-
note the user-user adjacency matrix as Es. For simplicity,
we represent the factual outcomes as A, and the unobserved
matrix of counterfactual links as ACF , which represents the
counterfactual outcomes when the treatment differs. We de-
note T ∈ {0, 1}N×N as the binary factual treatment matrix,
where Ti,j indicates the treatment of user pairs (ui, uj). We
define TCF as the counterfactual treatment matrix, where
each element TCF

i,j = 1 − Ti,j . Our objective is to estimate
the counterfactual outcomes A and ACF (representing the
observed and counterfactual data) to enhance link predic-
tion.

Since we cannot observe the potential outcomes under the
opposite treatment, we aim to find the nearest neighbor ob-
served context as a substitute. First, we compute the similar-
ity of node pairs using node-level embeddings, as calculat-
ing the distance between all pairs of nodes is extremely inef-
ficient and impractical in application. We learn the node em-
bedding X̃ ∈ RN×D. Therefore, for each (vi, vj) ∈ V × V ,
we define its counterfactual link (va, vb) as:

(va, vb) = arg min
va,vb∈V

{d(x̃i, x̃a) + d(x̃j , x̃b)} (7)

s.t. Ta,b = 1− Ti,j , d(x̃i, x̃a) + d(x̃j , x̃b) < 2γ, (8)
where d(·, ·) is specified as the Euclidean distance in the em-
bedding space of X̃ , and γ is the hyperparameter that defines
the maximum distance at which two nodes are considered
similar. If a node pair is not found within this distance, we
do not assign any nearest neighbor for the given node pair
to ensure all neighbors are sufficiently similar in the feature
space. Thus, if ∃(va, vb) ∈ V × V , the treatment matrix and
counterfactual adjacency matrix are defined as:

TCF
i,j = 1− Ti,j , ACF

i,j = Aa,b, (9)
otherwise, they are defined as:

TCF
i,j = Ti,j , ACF

i,j = Ai,j . (10)

Algorithm 1: GCA Algorithm
Input: f, g,A,X, n epochs, n epoch ft

Output: Â for factual link matrix, ÂCF for counterfactual link
matrix
1: Compute the treatment matrix T using Eqs. (7) and (8).
2: Compute the counterfactual treatment matrix TCF and the

counterfactual link matrix ACF using Eqs. (9) and (10).
3: for epoch ∈ range(n epochs) do
4: Compute the embedding matrix Z = f(A,X).
5: Generate Â and ÂCF using the function g and Eqs. (11)

and (12).
6: Update the parameters Θf and Θg by minimizing the loss

function L (Eq. 16).
7: end for
8: Freeze Θf and re-initialize Θg .
9: Compute the embedding matrix Z = f(A,X).

10: for epoch ∈ range(n epoch ft) do
11: Generate Â using the function g and Eqs. (11) and (12).
12: Update Θg by minimizing the loss function LF (Eq. 16).
13: end for
14: Compute the embedding matrix Z = f(A,X).
15: Generate Â and ÂCF using the function g and Eqs. (11) and

(12).

Counterfactual Links Learner (GCA-CLL) We repre-
sent each node pair using the Hadamard product of their
respective vectors. Specifically, for a node pair (vi, vj),
the representation is zi ◦ zj ∈ RH , where ◦ denotes the
Hadamard product. Drawing inspiration from (Zhao et al.
2022), we adopt a straightforward approach by employing
a simple decoder based on a multi-layer perceptron (MLP).
This decoder leverages the representations of node pairs and
their treatments. The function g is defined as follows:

Â = g(Z, T ), s.t.Âi,j = MLP([zi ◦ zj , Ti,j ]), (11)

ÂCF = g(Z, TCF ), s.t.ÂCF
i,j = MLP([zi ◦ zj , TCF

i,j ]),

(12)

here, [·, ·] denotes vector concatenation, and the outputs Â

and ÂCF are used to estimate the observed Individual Treat-
ment Effect (ITE) and the Average Treatment Effect (ATE).
For each node pair (vi, vj), the ITE is calculated. The ITE
and ATE are calculated as follows:

ATE = Ez∼ZITE(z), (13)

ITE(z) = g(z, 1)− g(z, 0), (14)
ITE(vi,vj) = g((zi, zj), 1)− g((zi, zj), 0), (15)

and we use those ITE and ATE improve the learning of Z.
The loss function are as follows:

LF =
1

N2

N∑
i=1

N∑
j=1

Ai,j · log Âi,j

+ (1−Ai,j) · log(1− Âi,j),

LCF =
1

N2

N∑
i=1

N∑
j=1

ACF
i,j · log ÂCF

i,j

+ (1−ACF
i,j ) · log(1− ÂCF

i,j ),

(16)
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To align the factual and counterfactual distribution repre-
sentations, we introduce discrepancy distance as an addi-
tional loss term to regularize representation learning. This
loss minimizes the distance between the learned representa-
tions from P̂F and P̂CF ,

Ldist = ∥P̂F
f − P̂CF

f ∥F , (17)

where ∥ · ∥F denotes the Frobenius norm. The combined
learning objective is defined as:

Lcomb = LF + α · LCF + β · Ldist. (18)

Here, α and β are hyperparameters that control the weights
of the counterfactual outcome estimation loss and the dis-
crepancy loss, respectively. The final user embedding is ob-
tained from the last layer of the MLP, with the same process
applied to items.

Loss Function
SR-GCA employs the Bayesian Personalized Ranking
(BPR) loss (Wang, Xia, and Huang 2023) to optimize
the counterfactual graph-augmented social relationships,
thereby enhancing recommendation quality. BPR maxi-
mizes the user’s preference for positive samples, enabling
the model to learn a more personalized ranking structure.
The loss function is defined as follows:

LBPR =
∑

(u,v+,v−)

− log
(
σ(r̂u,v+ − r̂u,v−)

)
(19)

where (u, v+, v−) is a triplet sample for pairwise recom-
mendation training, with v+ as a positive item user u has
interacted with and v− as a randomly sampled negative item
from non-interacted ones. The function σ(.) denotes the Sig-
moid activation, while r̂u,v+ and r̂u,v− are the predicted
scores for the positive and negative items, respectively. The
predicted score r̂u,v is derived from embeddings obtained
via counterfactual graph augmentation, given by:

r̂u,v = ẽ⊤u e
r
v (20)

To further improve model robustness and generalization,
SR-GCA integrates BPR loss with counterfactual inference
loss in a joint optimization framework. The final objective
function is given by:

L = LBPR + λLcomb (21)

where λ is a hyperparameter used to balance the trade-off
between ranking optimization and counterfactual reasoning
enhancement, effectively leverages counterfactual augmen-
tation to enable the model to better capture user preferences,
thereby improving the recommendation system’s accuracy
and generalization capabilities.

Disccusion
GCA between User-User and Item-Item rather than
User-Item. The need to capture complex topological re-
lationships has been a significant focus in previous research.
While it is essential to understand and supplement relation-
ships within complex topological structures, the similarity

Data Ciao Epinions
# Users 6,672 11,111
# Items 98,875 190,774
# Interactions 198,181 247,591
Interaction Density 0.0300% 0.0117%
# Social Ties 109,503 203,989
Social Ties Density 0.246% 0.165%

Table 2: Statistics of the two datasets.

between users and items often lacks meaningful relevance.
However, this similarity becomes critically important when
dealing with similar objects, where it plays a crucial role
in enhancing the accuracy and effectiveness of the model.
Therefore, it is imperative to explore methods that not only
consider the topological complexities but also effectively
leverage the similarities in objects of the same kind to im-
prove overall performance.

Extension on our SR-GCA with Different Backbones.
The SR-GCA module offers strong scalability as a plug-
and-play component that can be seamlessly integrated into
other SR backbones. We performed experiments to validate
its transferability, with detailed results available in the Ex-
periments section (RQ2) .

Experiments
In this section, we present a series of experiments conducted
to evaluate the performance of our SR-GCA model, focusing
on the following research questions (RQs):

• RQ1: How does SR-GCA compare to other state-of-the-
art methods?

• RQ2: How effective is the transferability of the GCA?
• RQ3: What impact do counterfactual links and various

treatments have on our method’s performance?
• RQ4: Is SR-GCA sufficiently robust to handle noisy and

sparse data in SR?
• RQ5: How does the time complexity of our method com-

pared to alternative approaches?

Experimental Settings
Datasets and Evaluation Metrics We conducted experi-
ments using two widely-used real-world datasets: Ciao and
Epinions. Detailed statistics for these datasets are presented
in Tab. 2. For evaluation, we employ Hit Ratio HR@N and
Normalized Discounted Cumulative Gain (NDCG)@N as
metrics, where N represents the number of items recom-
mended to the user, with a default value of 10 (Wang, Xia,
and Huang 2023).

Baselines We conducted comparative analyses against 10
state-of-the-art recommendation models: PMF (Salakhutdi-
nov and Mnih 2007), TrustMF (Yang et al. 2013), DiffNet
(Wu et al. 2019), DGRec (Song et al. 2019), EATNN (Chen
et al. 2019), NGCF (Wang et al. 2019), MHCN (Yu et al.
2021), KCGN (Huang et al. 2021), SMIN (Long et al. 2021),
DSL (Wang, Xia, and Huang 2023).
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Ciao Epinions

Method HR@N NDCG HR@N NDCG
PMF [2007] 0.4223 0.2464 0.1686 0.0968
TrustMF [2017] 0.4492 0.2520 0.1769 0.0842
DiffNet [2019] 0.5544 0.3167 0.2182 0.2055
DGRec [2019] 0.4658 0.2401 0.2055 0.0908
EATNN [2019] 0.4255 0.2525 0.1576 0.0794
NGCF [2019] 0.5629 0.3429 0.2969 0.1582
MHCN [2021] 0.5950 0.3805 0.3507 0.1926
KCGN [2021] 0.5785 0.3552 0.3122 0.1721
SMIN [2021] 0.5852 0.3687 0.3159 0.1867
DSL [2023] 0.6374 0.4065 0.3983 0.2290
SR-GCA 0.6586 0.4262 0.4120 0.2455

Table 3: Comprehensive analysis of overall performance.

Implementation Details The SR-GCA model was imple-
mented in PyTorch and optimized using the Adam optimizer.
The learning rate was tuned within [5e−4, 1e−3, 5e−3] with
a 0.96 decay factor per epoch. Batch sizes were selected
from [1024, 2048, 4096, 8192], and hidden dimensions
from [64, 128, 256, 512]. The Graph-Level Counterfac-
tual Augmentation module employed a GNN encoder and
a 3-layer MLP decoder with a 64-dimensional hidden layer
and ELU activation. The parameter γ was set according to
the γpct-percentile of node embedding distances for each
dataset. The optimal number of GNN layers was chosen
from [1, 2, 3, 4]. Regularization weights λ was selected from
[1e−3, 1e−2, 1e−1, 1e0, 1e1].

Overall Performance (RQ1)

An exhaustive comparative analysis of SR-GCA’s perfor-
mance relative to existing methods (see Tab. 3) demon-
strates that SR-GCA consistently outperforms all baseline
methods.Specifically, on the Ciao dataset, SR-GCA achieves
HR@N of 0.6586, surpassing the closest competitor, DSL,
by an impressive margin of 8.72%. Additionally, the NDCG
score reaches 0.4262, marking a significant 7.38% improve-
ment over the best-performing baseline, MHCN. On the
Epinions dataset, SR-GCA also excels, achieving an HR@N
of 0.4120, which represents a substantial 5.93% improve-
ment over the next best method MHCN, the NDCG score of
0.2455 for our model, reflecting an 6.22% improvement over
DSL, underscores the distinct advantages of our counter-
factual augmentation strategy. More specifically, SR-GCA
model performed better on the Ciao dataset, primarily due
to its higher density of social ties compared to the Epinions
dataset (See Tab. 2). The increased density leads to richer
user-item interactions, allowing the model to learn more ef-
fectively and make more accurate predictions. This denser
structure enables the model to capture underlying patterns in
the data more effectively, resulting in superior performance
on the Ciao dataset.

Model Ciao Epinions
HR@N NDCG HR@N NDCG

GDMSR 0.5402 0.3201 0.7219 0.5022
+ GCA 0.5543 0.3449 0.7392 0.5183
DGNN 0.5515 0.3383 0.7335 0.5215
+ GCA 0.5703 0.3528 0.7403 0.5309

Table 4: Performances of GCA on DGNN and GDMSR

Ciao Epinions

Method HR@N NDCG HR@N NDCG

SR-GCA 0.6586 0.4262 0.4220 0.2455

SR-GCA w/o CL of items 0.6203 0.4023 0.3993 0.2308

SR-GCA w/o CL of users 0.6329 0.4102 0.4010 0.2388

SR-GCA w/o CL of both 0.6091 0.3872 0.3375 0.2012

Table 5: Ablation Study of GCA.

Transferability Analysis (RQ2)
We validated the effectiveness of the GCA module by ex-
tracting it from the SR-GCA model and then integrating
it into two baseline models, DGNN and GDMSR, for fur-
ther evaluation. The experimental results (see Tab. 4) indi-
cate that GCA enhances the performance of both DGNN
and GDMSR, making it a valuable addition to these SR-
backbone models. Specifically, the GCA module improved
DGNN’s HR@N by approximately 3% on the Ciao dataset
and by 2% on the Epinions dataset, while it improved
GDMSR’s HR@N by around 2% on Ciao and by 2% on
Epinions. The GCA model performed better when inte-
grated with DGNN compared to GDMSR, primarily because
DGNN also employs a contrastive learning structure, which
complements the GCA module’s strengths. This synergy en-
hances the model’s ability to learn from counterfactual ex-
amples, leading to superior performance. All percentages are
rounded to the nearest whole number.

Ablation Study (RQ3)
Impact of GCA on Different Graph Level. We con-
ducted an ablation study to assess the impact of counter-
factual links on our GCA model (see Tab. 5). The varia-
tions include SR-GCA w/o CL of items (no counterfac-
tual links between items), SR-GCA w/o CL of users (no
counterfactual links between users), and SR-GCA w/o CL
of both (no counterfactual links between users and items).
The significant performance improvements observed under-
score the critical role of counterfactual links in enhancing
the SR-GCA model, emphasizing the importance of consid-
ering hypothetical social connections alongside actual data.

Impact of Different Treatment Strategies. Moreover, we
compared different treatments on the Ciao dataset, with
a specific focus on various graph clustering methods (see
Fig. 3). Among all those methods, the k-core clustering
method demonstrates the best performance with an HR@N
of 0.6586. This superior performance could be attributed to
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k-core’s ability to more effectively identify and preserve the
most influential and densely connected subgraphs within the
network, which enhances the model’s capacity to learn from
the most relevant interactions, leading to more accurate pre-
dictions compared to other clustering methods.

Robustness Evaluation (RQ4)
Data Noise. To test the model’s resilience to noise, we in-
troduced synthetic edges at varying levels (10%, 20%, 30%)
to mimic a noisy social graph (see Fig. 4). Our method
demonstrates robustness against competitors. Specifically,
SR-GCA maintained a relative HR of 0.95 at a 10% noise
ratio on the Ciao dataset, which is approximately 3% higher
than MHCN and 9% higher than NGCF+. On the Epinions
dataset, SR-GCA retained a relative HR@N of 0.90 at the
same noise level, outperforming MHCN by about 5% and
NGCF+ by 8%. This advantage stems from two factors: the
generation of enriched and diverse social data through coun-
terfactual augmentation and a causal model that discerns
causality over correlation.

Data Sparsity. To assess performance for less active
users, we divided users into four groups based on interaction
levels: 0–5, 6–10, 11–20, and ≥21 interactions, and com-
pared recommendation accuracy across these groups. As
shown in Fig. 4, SR-GCA consistently outperforms MHCN
and NGCF+, particularly in low-interaction scenarios com-
mon in real-world settings. For instance, in the Ciao dataset,
SR-GCA maintains a high HR@10 of approximately 0.64
for users with 0–5 interactions, outperforming MHCN by
8% and NGCF+ by 12%. In the Epinions dataset, SR-GCA
achieves an HR@N of about 0.41 for the same group, sur-
passing MHCN by 10% and NGCF+ by 14%. SR-GCA re-
mains robust across all sparsity levels, while other models
exhibit more variability.

Complexity Analysis (RQ5)
Experimental results (Fig. 5(b)) show SR-GCA outperforms
most methods in inference efficiency. On the Ciao dataset,
SR-GCA completes each epoch in 5 seconds, 59.6% faster
than average and 37.5% faster than SMIN (8 seconds). On
Epinions, it runs in 7 seconds per epoch, 55.6% faster than
average and better than DSL. This efficiency improvement
primarily affects the inference phase. By using counterfac-
tual augmentation, SR-GCA generates more informative so-
cial links during training, enabling better aggregation of

Figure 3: Results of GCA with different treatments.

Figure 4: Robustness study with respect to data noise and
sparsity: the upper plots represent data noise, while the lower
ones depict data sparsity.

Figure 5: Complexity Analysis.

neighbor information during inference, reducing redundant
computations, and accelerating convergence.

Conclusion
In this paper, we propose SR-GCA, a novel social recom-
mendation method that leverages counterfactual link gen-
eration to enhance link prediction and uncover causal rela-
tionships within social graphs. By introducing counterfac-
tual social links, SR-GCA effectively facilitates data aug-
mentation, improving the robustness and accuracy of social
recommendations. While counterfactual approaches have
demonstrated their effectiveness across various domains,
their potential in social recommendation remains largely un-
explored. Extensive experiments validate the superiority of
SR-GCA, highlighting its ability to enhance recommenda-
tion performance through counterfactual reasoning.
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